

McGOEY, HAUSER and EDSALL CONSULTING ENGINEERS D.P.C.

MARK J. EDSALL, P.E., P.P. (NY, NJ \& PA)
MICHAEL W. WEEKS, P.E. (NY, NJ \& PA)
MICHAEL J. LAMOREAUX, P.E. (NY, NJ, PA, VT, VA \& CT)
PATRICK J. HINES
LYLE R. SHUTE, P.E. LEED-AP (NY, NJ, PA)

TOWN OF NEWBURGH
PLANNING BOARD TECHNICAL REVIEW COMMENTS

PROJECT:
PROJECT NO.:
PROJECT LOCATION:
REVIEW DATE:
MEETING DATE:
PROJECT REPRESENTATIVE: MAURI ARCHITECTS, P.C.I JAY DIESING, R.A.

1. The Applicants have provided an amendment to the Stormwater Pollution Prevention Plan to address the minor increase in impervious services proposed for the clubhouse.
2. The trees in the area of the proposed projects were cleared based on a permit issued by the Town of Newburgh Building Department in order to avoid impacts to bat species.
3. Orange County Planning referral was prepared and submitted by this office. The response was no significant regional or county impacts advisory comments were received.
4. Status of receipt of a City of Newburgh flow acceptance letter should be addressed. No approvals can be granted until the City of Newburgh flow acceptance letter for the modified flow of approximately 1200 gallons per day has been provided.

Respectfully submitted,
McGoey, Hauser and Edsall
Consulting Engineers, D.P.C.
Patrick J. Hines
Principal
PJH/lcr

MARTIN I DIESINS AIA RIEHARD K TOMPKINS AIA

May 14, 2019
Mr. John Ewasutyn, Chairman
Town of Newburgh Planning Board
308 Gardnertown Road
Newburgh, NY 12550
RE: Lakeside Senior Apartments
Town of Newburgh Project \# 2019-06
Dear Chairman Ewasutyn,
Enclosed for your review are revised Site Plans, Exterior Elevations and an amended SWPPP for the above referenced project. These have been updated in response to comments at our previous Planning Board appearance and comments from the Board's consultants.

Our office is in receipt of a Technical Review Comment Letter from McGoey, Hauser and Edsall Consulting Engineers, DPC dated March 1, 2019. The following are the comments and our responses:

1. The project is before the Board to add a Clubhouse, pool, pavilion and recreational courts on the south side of the project. The Applicant's representatives are requested to evaluate potential impacts to the existing stormwater management facilities from the increased runoff. An existing bio-retention area exists immediately North of the proposed recreation facilities.

The identified bio-retention area has been expanded for the increased run-off and the Site Plans and SWPPP have been amended to reflect the impact of the proposed Clubhouse and other facilities.
2. If water or sewer facilities are included in the Clubhouse a sewer flow acceptance letter increase from the City of Newburgh is required.

Please find attached an amended sewer flow calculation letter from Medenbach \& Eggers for submission to the Town and City of Newburgh Engineering Departments for approval.
3. Existing groundcover in the area should be identified: Project previously had a clearing restriction related to threatened and endangered bat species.

A tree clearing permit was approved and issued by the Building Department. Trees in the new limit of disturbance area were cut prior to the March 31 restriction. No stump removal or grading was performed.
4. The project proposes revisions to the architectural review of the proposed senior living structures. These should be reviewed with the Board.

No response required.
5. The amended site plan requires submission to Orange County Planning.

Please refer to OCDP comments and our responses below.
Our office is also in receipt of a Comment Letter from David Church, AICP Commissioner of Planning Orange County Department of Planning dated March 13, 2019. The following are the comments and our responses:

1. Previous Referrals: The project site is only marginally within the 500 distance requirement from NYS Route 17 K , and as such, the previous application for site plan approval of the senior housing complex was not referred to this office. The Planning Department's primary concerns for the overall project would have been stormwater management and road access. Stormwater management plans were reviewed by the Town Planning Board and the New York State Department of Environmental Conservation and deemed to be sufficient; the proposed road access was likewise reviewed by the Town Planning Board and deemed to be sufficient. We will accept these findings.

No response required.
2. Stormwater Management The proposed addition of recreational buildings will add minimal stormwater runoff to the already-approved stormwater management system. We advise the Tow that although the measures proposed for the additional stormwater appear to be sufficient, the stormwater management system may need additional facilities or area in order to accommodate the increase in impervious surface.

Please refer to MH\&E, DPC comment \#1 and our response above.
Ilook forward to continuing our discussion regarding this project with you and the Planning Board at the next meeting. If you have any questions, or would like to discuss the project prior to the meeting, please don't hesitate to contact me.

Medenbach \& Eggers

Civil Engineering and Land Surveying P.C.
4305 USHighway 209
Stone Ridge, New York
12484-5620
Phone (845) 687-0047
Fax (845) 687-4783
William R.Eggers LS.
www.mecels.com

Barry Medenbach,P.E.

N.Y.Lic. No. 60142

NJ.Lic.No. 27646
April 24, 2019 *

Town of Newburgh Engineer
Jim Osborne, P.E.
1496 Route 300
Newburgh, NY 12550

Re: Lakeside Senior - Waste flow requirements for 102 apartment units and club house situated at lakeside Road. Tax map numbers: 86-1-39.22 \& 39.23.

Dear Jim,

As required by Planning Board consultant Patrick Hines, P.E. following are calculations for proposed waste water from the above project to acquire a "City of Newburgh Flow Acceptance Letter."

Project Description:
The project was previously approved for 102 apartment units with an average daily flow of 11,220 gallons per day. See the attached Lakeside Senior - Waste flow requirement letter dated March 13, 2017. The proposal is to add a club house for the apartment residents and their quests.

The club house area will have a total occupancy of approximately 120 occupants between the pool, pavilion area, and the interior area of clubhouse building. Using the New York State Department of Environmental Conservation (NYSDEC) design standard of 10 gallons per day per swimmer and occupant will produce 1,200 gallons per day. The total average daily flow for the complete facility would be increased to 12,420 gallons per day.

Attached:
20170313 Lakeside Senior - Waste flow requirements letter

CITY OF NEWBURGH

Office of the Engineer
83 Broadway, Newburgh, New York 12550
(845) $569.7448 /$ Fax (845) 569.7349
www.cityofnewburgh-ny.gov

Jason C. Morris, PE
City Engineer
jmorris@cityofnewburgh-ny.gov

March 27, 2017
James W. Osborne, PE
Town Engineer
Town of Newburgh
1496 Route 300
Newburgh, NY 12550
Re: Crossroads S.D. - City/Town of Newburgh Intermunicipal Agreement
Lakeside Senior Residential Site Plan -Sewer Connection Approval (11,220 gpd) Tax Map No. 86-1-39.22 \& 39.23

Mr. Osborne,
Pursuant to the terms and conditions of the City-Town of Newburgh Intermunicipal Sewer Agreement dated May 6, 2004, permission is hereby granted for a sewer connection to the Town of Newburgh's sewer main to service the proposed Lakeside Senior Residential Site Plan project consisting of 102 units proposed along Lakeside Road in the Town of Newburgh. The anticipated sewer flow increase of $11,220 \mathrm{gpd}$ from this comection will be counted toward the 3.8 million gallons per day capacity allocated to the Town, as stated in the City-Town Sewer Agreement.

Please notify this office via email when sewer flows from this new connection are to commence. If you have any questions regarding this approval, please contact this office at your convenience.

City Engineer
cc: Michael Ciaravino, City Manager
Michelle Kelson, Corporation Counsel George Garrison, DPW Superintendent Michael Batz, Severn Trent Services Gil Piaquadio, Town Supervisor John Platt, DPW Commissioner
Mark Taylor, Town Attomey
Barry Medenbach, PE, Medenbach \& Eggers

TOWN OF NEWBURGH
1496 Route 300, Newburgh, New York 12550

March 20, 2017

Mr. Jason Morris
City of Newburgh Engineer
83 Broadway
Newburgh, NY 12550

RE: S CROSSROADS S.D. - CITY OF NEWBURGH INTERMUNICIPAL SEWER AGREEMENT (Lakeside Senior Residential Site Plan)

Dear Mr. Morris:

Per the requirements of the above referenced Agreement, I am requesting approval for a new sewer connection to the Crossroads Sewer District. The Lakeside Senior Site Plan consists of 102 senior rental apartments as described in the attached 13 March 2017 letter from Barry Medenbach. The projected sewage flow for this project is 11,220 gallons per day.

If you have any questions, please feel free to contact me. I look forward to your reply.

JWO/id
Attachment
cc: G. Piaquadio, Supervisor
M. Taylor, Attorney
J. Guido, Sewer Supt. (CAMO)
J. Ewasutyn, P.B. Chairman
P. Hines, MH\&E
B. Medenbach, M\&E

Medenbach \& Eggers

Civil Engineering and Land Surveying P.C.
4305 US Highway 209
Stone Ridge, New York
Barry Medenbach, P.E.
N.Y.Lic. No. 60142

NJ.Lic. No. 27646
12484-5620
Phone (845) 687-0047
Fax (845) 687-4783
www.mecels.com
March 13, 2017
Town of Newburg Engineer
Jim Osborne, P.E.
308 Gardnertown Road
Newburgh, NY 12550
Re: Lakeside Senior - Waste flow requirements for 102 units situated at lakeside Road. Tax map
numbers: $86-1-39.22 \& 39.23$.
Dear Jim,

As required by Planning Board consultant Patrick Hines, P.E. following are calculations for proposed waste water from the above project to acquire a "City of Newburgh Flow Acceptance Letter."

Project Description:

The proposed senior housing project is to provide 120 rental units in three buildings located behind the Four Points Sheraton Hotel on a Right of Way (ROW) off Lakeside Road. Sewerage will be provided by an onsite duplex grinder pump station that will collect sewage by gravity from the three buildings and then pump the sewage along the ROW approximately 1400 feet to the existing $4^{\prime \prime}$ force main in Lakeside Road that connects to the force main along Route 17 R approximately 800 feet to the west.

The buildings will contain 72 two bedroom and 30 one bedroom apartments for a total of 174 bedrooms. Using the New York State Department of Environmental Conservation (NYSDEC) design standards of 110 gallons per day per bedroom will produce 19,140 gallons per day. This assumes a population of 348 , two per bedroom. However, the project is age restricted and it is anticipated one bedroom in the two bedroom units will be used as a guest room, office space or craft room and the population will be substantially less than 348 and more likely 204 . This assures guests using the $2^{\text {nd }}$ bedroom would equal the apartment with single residence. Therefore, we estimate the average population of 204 and the average daily flow would be 11,220 gallons per day.

Please let us know if this is acceptable for the Flow Acceptance Letter.

Cc: Planning Board Chairman, John Ewasutyn
Pat Hines, P.E

AMENDED Stormwater Pollution Prevention Plan

For
Lakeside Senior Housing

Situate:
21 Lakeside Rd.
Town of Newburgh
Orange County, New York
Prepared for:
Hudson Place at Lakeside, LLC
PO Box 14
Bridgehampton, NY 11932

Prepared by:
Medenbach and Eggers
Civil Engineering and Land Surveying, PC
4305 US Highway 209
Stone Ridge, New York
Ph: 845-687-0047

Stormwater Pollution Prevention Plan (SWPPP) Amended Lakeside Senior Housing

Index

Project Change 1
1.4 Changes in Cover Estimates 2
Revised Pre and Post-development Runoff Rate Comparison from Section 4.1.2 2
Revised Runoff Reduction Volume and Water Quality Volume table from Section 4.2: 2
Revised Bio-Retention Zone Design Parameters from Section 4.4.1: 3
Appendices:
Appendix A: Revised Water Quality Volume Calculations A
Appendix B: Revised HydroCAD Calculations. B
Appendix C: Revised Post Development Plan C

Project Change:

The Lakeside Senior Housing is an authorized 102-unit Senior Housing Development within three 3-story buildings that is currently under construction. This report is to amend the original SWPPP dated July 6, 2017 that has coverage under SPDES general permit for Storm Water Discharges from CONSTRUCION ACTIVITY General Permit No. GP-0-15-002. The permit identification number for this site is NYR11D874. The project is now proposing to include a $1,700 \mathrm{SF}$. club house with an outside pool, tennis court and pavilion at the south end of the site near the driveway entrance. The club house, pool, tennis court and pavilion will increase the impervious surfaces area by 0.19 acres and increase the total disturbance of the site by 0.57 acres. The additional impervious cover increases the percentage impervious cover over the entire site to 19.7%. To treat the increase in impervious cover we are proposing to expand Bioretention \#1 and install two new catch basins to direct stormwater water for treatment. Below are the tables that have been revised from the current SWPPP dated July 6, 2017 due to the increase of impervious cover from the proposed club house, pool, tennis court and pavilion. Attached are the revised Water Quality Volume Calculations in Appendix A.

The larger Bioretention \#1 will mitigate the impacts of the proposed development for runoff quantity and quality improvements to remove pollutants from the stormwater before it is discharged on site into and ACOE wetland.

The intent of this amended plan is to prepare the calculations and sizing of the sites drainage system as part of a Storm Water Pollution Prevention Plan (SWPPP) that meet standards of design for Storm water Management Practices (SMP) of the State of New York in accordance with National Pollutant Discharge Elimination System (NPDES).

Stormwater Pollution Prevention Plan (SWPPP) Amended Lakeside Senior Housing

When the revised practices are constructed they will reduce all post-development peak flows from the site to less than peak development rates. Therefore, there will be no negative impacts on downstream waters or adjacent lands caused by increased peak flow rates.

Revised from section 1.4:

1.4 Changes in Cover Estimates:

The following are estimates of the proposed development.

Total project area:	19.23 acres
Approximate construction site area to be disturbed:	6.95 acres
Percentage impervious area before construction:	5.3%
Runoff coefficient before construction:	$\mathrm{CN}=85$
Percentage impervious area after construction:	19.7%
Runoff coefficient after construction	$\mathrm{CN}=90$
Future impervious cover	3.79 acres
Conservation of natural areas	9.25 acres

Revised Pre and Post-development Runoff Rate Comparison from Section 4.1.2:

The table below shows the change in post-development runoff rates to the ACOE Wetlands. Detailed HydroCAD calculations for the revisions are in Appendix B and replace the E14_077 Lakeside Post HydroCAD calculations.

Discharge to ACOE wetlands going under Lakeside Road

Storm	Pre-development (cfs)	Post-development (cfs)	\% Change
1 Year	3.83	2.62	$\mathbf{- 3 1 . 6 \%}$
10 Year	13.07	11.16	$\mathbf{- 1 4 . 6 \%}$
100 Year	29.19	29.17	$\mathbf{- 0 . 1 \%}$

Revised Runoff Reduction Volume and Water Quality Volume table from Section 4.2:

Runoff Reduction Volume and Water Quality Volume

Required WQv (cubic feet)	Provided Storage of WQV (cubic feet)	Required Runoff Reduction Volume (cubic feet)	Provided Runoff Reduction Volume (cubic feet)
19,810	25,320	4,586	6,747

Stormwater Pollution Prevention Plan (SWPPP) Amended Lakeside Senior Housing

Revised Bio-Retention Zone Design Parameters from Section 4.4.1:

	Bio-Retention Zone Design Parameters			
	Required WQV (cubic feet)	Required Area of Filter Bed (square feet)	Provided Storage of WQV (cubic feet)	Provided Area of Filter Bed (square feet)
Bio-retention Zone 1	2,630	2,192	3,120	2,600
Bio-retention Zone 2	4,228	3,036	6,300	4,500

Appendix A

Revised Water Quality Volume Calculations

Version 1.7
Last Updated: 10/02/2015

Total Water Quality Volume Calculation
WQv (acre-feet $)=[(\mathrm{P})(\mathrm{Rv})(\mathrm{A})] / 12$

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to postdevelopment 1 year runoff volume)?

dentify Runorf Reduction fechniques By Area \%					
Technigue		contributing Impervious Area (ave)	Notes		
Conservation of Natural Areas	0.00	0.00	minimum $10,000 \mathrm{sf}$		
Riparian Buffers	9.49	0.00	maximum contributing length 75 feet to 150 feet		
Filter Strips	0.00	0.00			
Tree Planting	0.00	0.00	Up to 100 sf directly connected impervious area may be subtracted per tree		
Total	9.49	0.00			
	WeWovafter app	cation of Area Re	ductionTechnques ${ }^{\text {a }}$,		
	Total Area (Acres)	impervious Atea (Acres)			
"<<Initial WQv"	19.23	3.79	20\%	0.23	22,221
Subtract Area	-9.49	0.00			
WQv adjusted after Area Reductions	9.74	3.79	39\%	0.40	19,810
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	9.74	3.79	39\%	0.40	19,810
WQv reduced by Area Reduction techniques					2,411

Minimum RRv

Soil Group	Acres	S	
A		55\%	
B		40\%	
C	9,74	30\%	
D	9.49	20\%	
Total Area	19.23		
(4)			
S =	0.25		
Impervious =	3.79	acre	
Precipitation	1.4	in	
Rv	0.95		
Minimum RRv		ft3	
	0.11	af	

Infiltrating Bioretention Worksheet

(For use on HSG A or B Soils without underdrains)
WQv $\leq \mathrm{VSM}+\mathrm{VDL}+(\mathrm{DP} \times \mathrm{ARG})$
VSM $=A R G \times D S M \times n S M$
VDL (optional) $=$ ARG \times DDL $\times n D L$

Appendix B

Revised HydroCAD Calculations

E18 021 Hudson Place at Lakeside Post

Prepared by Medenbach \& Eggers
Page 2
HydroCAD®8.00 $\mathrm{s} / \mathrm{n} 000567$ © 2006 HydroCAD Software Solutions LLC

Area Listing (all nodes)

```
Area (acres) CN Description (subcats)
5.29672 Woods/grass comb., Good, HSG C (2-1,2-11,2-2.1,2-2.2,2-3)
\(2.71574>75 \%\) Grass cover, Good, HSG C (2-10,2-12,2-2.1,2-2.2,2-5,2-7,2-8,2-9)
0.87689 Gravel roads, HSG C (2-2.1,2-2.2)
3.24698 Paved parking \& roofs (2-10,2-12,2-14a,2-14c,2-2.1,2-2.2,2-3,2-4,2-5,2-6a-b,2-6c,2-6d,2-7,2-\&
```

12.132

Time span $=0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 4801$ points Runoff by SCS TR-20 method, UH=SCS
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2-1: 2-1

Flow Length $=40^{\prime}$ Slope $=0.1000$ ' $\% \quad$ Rc=3 $6 \mathrm{~min} \mathrm{CN}=72$ Runoff $=0.39 \mathrm{css} 0.029$ af
Flow Length=40' Slope $=0.1000$ ' $/$ ' Tc=3.6 $\mathrm{min} \quad \mathrm{CN}=72$ Runoff $=0.39 \mathrm{cfs} 0.029$ af
Subcatchment 2-10: 2-10

Subcatchment 2-11: 2-11

Subcatchment 2-12: 2-12

Subcatchment 2-14a: 2-14a

Subcatchment 2-14c: 2-14c

Subcatchment 2-2.1: 2-2.1

Subcatchment 2-2.2: 2-2.2

Subcatchment 2-3: 2-3

Subcatchment 2-4: 2-4

Subcatchment 2-5: 2-5

Subcatchment 2-6a-b: 2-6a-b

Subcatchment 2-6c: 2-6c

Subcatchment 2-6d: 2-6d

Subcatchment 2-7: 2-7

Flow Length $=75^{\prime}$ Slope $=0.1000$ '/'
Runoff Area $=15,216$ sf Runoff Depth $=0.77^{\prime \prime}$ $\mathrm{T}=6.0 \mathrm{~min} \mathrm{CN}=75$ Runoff $=0.29 \mathrm{cfs} 0.022$ af

Runoff Area $=19,231$ sf Runoff Depth $=0.64^{\prime \prime}$ $\mathrm{Tc}=8.9 \mathrm{~min} \mathrm{CN}=72$ Runoff $=0.26 \mathrm{cfs} 0.023$ af

Runoff Area=7,326 sf Runoff Depth=2.06"
Flow Length=132' $\mathrm{Tc}=2.4 \mathrm{~min} \mathrm{CN}=94$ Runoff $=0.45 \mathrm{cfs} 0.029$ af
Runoff Area=3,459 sf Runoff Depth=2.47" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.21 \mathrm{cfs} 0.016$ af

Runoff Area=3,459 sf Runoff Depth=2.47" $\mathrm{T} \mathbf{c}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.21 \mathrm{cfs} 0.016$ af

Runoff Area=242,997 sf Runoff Depth=0.92"
Flow Length $=951$ ' $\mathrm{T} \mathbf{C}=53.8 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff $=2.40 \mathrm{cfs} 0.428$ af
Runoff Area=35,686 sf Runoff Depth=1.27"
Flow Length $=525^{\prime} \quad \mathrm{T} \mathbf{C}=5.3 \mathrm{~min} \quad \mathrm{CN}=84$ Runoff $=1.25 \mathrm{cfs} 0.087$ af
Runoff Area $=87,039$ sf Runoff Depth $=0.92^{\prime \prime}$
Flow Length $=537^{\prime} \quad \mathrm{T}=28.5 \mathrm{~min} \mathrm{CN}=78$ Runoff $=1.19 \mathrm{cfs} 0.153$ af
Runoff Area=7,182 sf Runoff Depth=2.47"
Flow Length=340' $\mathrm{T} \mathbf{C}=1.7 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.50$ cfs 0.034 af
Runoff Area=14,005 sf Runoff Depth=2.06"
Flow Length $=150^{\prime}$ Slope $=0.0130$ '/' Tc $=2.0 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff $=0.87 \mathrm{cfs} 0.055$ af
Runoff Area=6,917 sf Runoff Depth=2.47" $\mathrm{Tc}=7.5 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.39 \mathrm{cfs} 0.033$ af

Runoff Area=3,459 sf Runoff Depth=2.47" Tc=5.0 min CN=98 Runoff $=0.21 \mathrm{cfs} 0.016$ af

Runoff Area=3,459 sf Runoff Depth=2.47" $\mathrm{T} \mathbf{C}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.21 \mathrm{cfs} 0.016$ af

Runoff Area=29,800 sf Runoff Depth $=0.92$ "
Flow Length $=339^{\prime} \quad \mathrm{Tc}=36.9 \mathrm{~min} \mathrm{CN}=78$ Runoff $=0.36 \mathrm{cfs} 0.052$ af
E18 021 Hudson Place at Lakeside Post Type III 24-hr 1 Year Rainfall=2.70"Prepared by Medenbach \& Eggers

Subcatchment 2-8: 2-8

Runoff Area $=9,868$ sf Runoff Depth $=2.36$ " Flow Length=188' Slope $=0.0130$ '/' Tc $=2.4 \mathrm{~min} \quad \mathrm{CN}=97$ Runoff $=0.66 \mathrm{cfs} 0.045 \mathrm{af}$

Subcatchment 2-9: 2-9

Runoff Area=15,382 sf Runoff Depth=2.16" Flow Length=183' Slope $=0.0160$ ' $/$ Tc=2.1 $\mathrm{min} \quad \mathrm{CN}=95$ Runoff $=0.98 \mathrm{cfs} 0.063$ af

Pond 1: Catch Basin 1

Pond 2: Catch Basin 2
Pond 3: Catch Basin 3

Pond 4: Catch Basin 4

Pond 5: Catch Basin 5
Pond 6: Catch Basin 6
Pond 7: Catch Basin 7
Pond BIO 1: Bio-Retention Zone \#1
Peak Elev=504.14' Storage=2,088 cf Inflow=1.19 cfs 0.153 af Discarded $=0.28$ cfs 0.153 af Primary $=0.00$ cfs 0.000 af Outflow $=0.28$ cfs 0.153 af
Pond C1: Road Culvert Storage
Pond C2: Road Culvert Storage
Pond Pond: Existing Pond
Pond WQB1: Water Quality Basin \#1 Primary $=0.13$ cfs 0.145 af Secondary $=0.00$ cfs 0.000 af Outflow $=0.13 \mathrm{cfs} 0.145$ af

Total Runoff Area $=12.132$ ac Runoff Volume $=1.120$ af Average Runoff Depth $=1.11$ "

 73.24\% Pervious Area = 8.886 ac 26.76\% Impervious Area = 3.246 acSubcatchment 2-1: 2-1
Runoff $=\quad 0.39$ cfs @ 12.07 hrs, Volume $=0.029$ af, Depth= $0.64{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

Area (sf)	CN	Description			
24,000	72	Woods/grass comb., Good, HSG C			
24,000	Pervious Area				
Tc Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Subcatchment 2-10: 2-10
Runoff $=0.29 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= $\quad 0.022$ af, Depth= $0.77^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

	Area (sf)	CN	$>75 \%$ Grass cover, Good, HSG C Paved parking \& roofs		
	$\begin{array}{r} 14,416 \\ 800 \\ \hline \end{array}$				
	$\begin{array}{r} 15,216 \\ 14,416 \\ 800 \end{array}$	75	Weighted Pervious A Impervious	verage ea Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 2-11: 2-11

Runoff $=0.26 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=0.023 \mathrm{af}$, Depth= $0.64{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

Subcatchment 2-12: 2-12
Runoff = 0.45 cfs @ 12.04 hrs , Volume= 0.029 af, Depth= 2.06"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

Area (sf)		CN	escription		
	$\begin{aligned} & 6,226 \\ & 1,100 \end{aligned}$		Paved parking \& roofs $>75 \%$ Grass cover, Good, HSG C		
	$\begin{aligned} & 7,326 \\ & 1,100 \\ & 6,226 \end{aligned}$	94	eighted ervious A mpervious	$\begin{aligned} & \text { verage } \\ & \text { ea } \\ & \text { Area } \end{aligned}$	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.9	15	0.4000	0.27		Sheet Flow, 1 Grass: Dense n=0.240 P2=3.25"
1.5	117	0.0170	1.34		Sheet Flow, Pavement Smooth surfaces $n=0.011 \quad \mathrm{P} 2=3.25^{\prime \prime}$

Subcatchment 2-14a: 2-14a

Runoff $=0.21$ cfs @ 12.07 hrs, Volume= $\quad 0.016$ af, Depth= $2.47^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 1 Year Rainfall $=2.70$ "

	Area (sf)	CN	Description		
	3,459	98 P	Paved parking \& roofs		
	3,459		mpervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
5.0					Direct Entry,

Subcatchment 2-14c: 2-14c
Runoff $=0.21$ cfs @ 12.07 hrs, Volume= $\quad 0.016$ af, Depth= $2.47^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall=2.70"

Area (sf)	CN	Description
3,459	98	Paved parking \& roofs
3,459		Impervious Area

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$
5.0	Capacity (cfs)	Description	
		Direct Entry,	

Subcatchment 2-2.1: 2-2.1

Runoff $=\quad 2.40 \mathrm{cfs} @ 12.79 \mathrm{hrs}$, Volume= $\quad 0.428 \mathrm{af}$, Depth= $0.92{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall= $2.70^{\prime \prime}$

	ea (sf)	CN	Description		
	12,752	72	Woods/grass comb., Good, HSG C		
	41,752	98	Paved parking \& roofs		
	68,605	74	>75\% Grass cover, Good, HSG C		
19,888 89			Gravel road	s, HSG C	
	42,997	78	Weighted Average		
201,245			Pervious AreaImpervious Area		
41,752					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
38.9	150	0.0100	- 0.06		Sheet Flow, Woods
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.25{ }^{\prime \prime}$
3.6	150	0.0100	0.70		Shallow Concentrated Flow, Yard
					Short Grass Pasture Kv= 7.0 fps
3.6	150	0.0100	- 0.70		Shallow Concentrated Flow, Yard
					Short Grass Pasture Kv=7.0 fps
2.2	150	0.0260	- 1.13		Shallow Concentrated Flow, Yard
					Short Grass Pasture Kv= 7.0 fps
2.0	150	0.0330	- 1.27		Shallow Concentrated Flow, Yard
					Short Grass Pasture Kv= 7.0 fps
2.5	150	0.0400	1.00		Shallow Concentrated Flow, Trees
					Woodland Kv= 5.0 fps
1.0	51	0.0350	0.87	8.72	Channel Flow, Swale
					Area= 10.0 sf Perim $=31.0^{\prime} \mathrm{r}=0.32^{\prime}$
					$\mathrm{n}=0.150$ Sheet flow over Short Grass
53.8951		Total			

Subcatchment 2-2.2: 2-2.2

Runoff $=1.25$ cfs @ 12.08 hrs, Volume= $\quad 0.087$ af, Depth= $1.27^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

Subcatchment 2-3: 2-3

Runoff $=1.19$ cfs @ 12.44 hrs, Volume= $\quad 0.153$ af, Depth= $0.92^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall=2.70"

Area (sf)		CN	Description		
	$\begin{aligned} & 65,539 \\ & 21,500 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 98 \\ & \hline \end{aligned}$	oods/gras aved park	s comb., ing \& roofs	ood, HSG C
	$\begin{aligned} & 87,039 \\ & 65,539 \\ & 21,500 \end{aligned}$		eighted A ervious Ar pervious	$\begin{aligned} & \text { verage } \\ & \text { ea } \\ & \text { Area } \end{aligned}$	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.4	150	0.0500	0.12		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad P 2=3.25^{\prime \prime}$
2.3	140	0.0420	1.02		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
1.2	142	0.0100	2.03		Shallow Concentrated Flow, Parking area Paved $\mathrm{Kv}=20.3 \mathrm{fps}$
0.6	35	0.0200	0.99		Shallow Concentrated Flow, Grass Short Grass Pasture Kv=7.0 fps
4.0	70	0.0010	0.29	3.60	Channel Flow, Area= 12.5 sf Perim=26.0' $\mathrm{r}=0.48^{\prime}$ $\mathrm{n}=0.100$ Very weedy reaches w/pools

Subcatchment 2-4: 2-4
Runoff $=0.50 \mathrm{cfs} @ 12.02 \mathrm{hrs}$, Volume $=\quad 0.034$ af, Depth= $2.47^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall= $=2.70^{\prime \prime}$

Area (sf)		CN	Description		
	7,182	98 P	aved park	ing \& roofs	
7,182		Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.9	100	0.0400	1.83		Sheet Flow, Pavement Smooth surfaces $n=0.011 \quad P 2=3.25^{\prime \prime}$
0.4	150	0.0800	5.74		Shallow Concentrated Flow, Pavement Paved Kv=20.3 fps
0.4	90	0.0375	3.93		Shallow Concentrated Flow, Pavement Paved $\mathrm{Kv}=20.3 \mathrm{fps}$

Subcatchment 2-5: 2-5

Runoff $=0.87 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.055$ af, Depth= $2.06{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall=2.70"

	Area (sf)	CN	Description	
	$\begin{array}{r} 11,500 \\ 2,505 \\ \hline \end{array}$	$\begin{array}{ll} 98 & F \\ 74 & > \end{array}$	Paved parking \& roofs $>75 \%$ Grass cover, Good, HSG C	
	$\begin{array}{r} 14,005 \\ 2,505 \\ 11,500 \end{array}$	94 V	Weighted Average Pervious Area Impervious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\underset{\text { (feet) }}{\substack{\text { Length }}}$	Slope (ft/ft)	Velocity Capacity (ft/sec) (cfs)	Description
2.0	150	0.0130	- 1.27	Sheet Flow, Pavement Smooth surfaces $n=0.011 \quad P 2=3.25^{\prime \prime}$

Subcatchment 2-6a-b: 2-6a-b
Runoff $=\quad 0.39$ cfs @ 12.10 hrs , Volume= 0.033 af, Depth= 2.47"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

Area (sf)	CN	Description
6,917	98	Paved parking \& roofs
6,917	Impervious Area	

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.5					Direct Entry

Subcatchment 2-6c: 2-6c
Runoff $=0.21$ cfs @ 12.07 hrs, Volume= $\quad 0.016$ af, Depth= 2.47"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall=2.70"

	Area (sf)	CN Description			
	3,459	98	Paved park	ing \& roofs	
3,459		Impervious Area			Description
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	
5.0					Direct Entry

Subcatchment 2-6d: 2-6d

Runoff = $\quad 0.21$ cfs @ 12.07 hrs, Volume= 0.016 af, Depth= 2.47"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall=2.70"

Subcatchment 2-7: 2-7

Runoff $=0.36 \mathrm{cfs} @ 12.55 \mathrm{hrs}$, Volume= $\quad 0.052$ af, Depth= $0.92{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 1 Year Rainfall $=2.70$

Area (sf)	CN	Description
5,002	98	Paved parking \& roofs
24,798	74	$>75 \%$ Grass cover, Good, HSG C
29,800	78	Weighted Average
24,798		Pervious Area
5,002		Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.4	150	0.0500	0.12		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.25^{\prime \prime}$
15.8	100	0.0420	0.11		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad P 2=3.25^{\prime \prime}$
0.7	89	0.0100	2.03		Shallow Concentrated Flow, Pavement Paved $\mathrm{Kv}=20.3 \mathrm{fps}$
36.9	339	Total			

Subcatchment 2-8: 2-8

Runoff $=0.66 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.045 \mathrm{af}$, Depth= $2.36{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall $=2.70^{\prime \prime}$

	Area (sf)	CN D	Description		
	$\begin{array}{r} 9,500 \\ 368 \\ \hline \end{array}$	$\begin{array}{ll} 98 & P \\ 74 & > \end{array}$	Paved parking \& roofs $>75 \%$ Grass cover, Good, HSG C		
	$\begin{array}{r} 9,868 \\ 368 \\ 9,500 \end{array}$	97 W	Weighted Average Pervious Area Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.4	188	0.0130	1.32		Sheet Flow, Smooth surf

Subcatchment 2-9: 2-9

Runoff $=\quad 0.98$ cfs @ 12.03 hrs, Volume= $\quad 0.063$ af, Depth= $2.1^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 1 Year Rainfall=2.70"

Pond 1: Catch Basin 1

Inflow Area $=$	1.998 ac, Inflow Depth $=0.00 "$	for 1 Year event	
Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume
Outflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume
Primary	0.000 af		
	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev=500.75' @ 0.00 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	500.75^{\prime}	$\mathbf{1 8 . 0 ^ { \prime \prime } \times 7 5 . 0 ^ { \prime } \text { long Culvert CPP, square edge headwall, } \mathrm { Ke } = 0 . 5 0 0}$
		Outlet Invert $499.75 ' \mathrm{~S}=0.0133$	
		$\mathrm{n}=0.013$ Corrugated PE , smooth interior	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=500.75' (Free Discharge)
L-Culvert (Controls 0.00 cfs)

Pond 2: Catch Basin 2

Primary OutFlow Max=0.50 cfs @ 12.02 hrs HW=503.87' (Free Discharge)
—1=Culvert (Barrel Controls 0.50 cfs @ 2.42 fps)

Pond 3: Catch Basin 3

Inflow Area $=$	0.566 ac, Inflow Depth $=2.24 "$	for 1 Year event	
Inflow	$=$	$1.55 \mathrm{cfs} @$	12.03 hrs, Volume=
Outflow	$=$	$1.55 \mathrm{cfs} @$	12.03 hrs, Volume $=$
Primary	$=$	$1.55 \mathrm{cfs} @$	12.03 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Peak Elev= 503.12' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	502.50	$15.0^{\prime \prime} \times 110.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
		Outlet Invert= $501.60^{\prime} \mathrm{S}=0.0082$ i/ $\mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior	

Primary OutFlow Max=1.55 cfs @ 12.03 hrs HW=503.12' (Free Discharge)
L1=Culvert (Barrel Controls 1.55 cfs @ 3.73 fps)

Pond 4: Catch Basin 4

Inflow Area =	0.248 ac, Inflow Depth = 2.19"	for 1 Year event
Inflow	0.64 cfs @ 12.04 hrs, Volume=	0.045 af
Outflow	0.64 cfs @ 12.04 hrs , Volume=	0.045 af, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary	0.64 cfs @ 12.04 hrs, Volume=	0.045 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Peak Elev= 502.85' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	502.50^{\prime}	$\mathbf{1 8 . 0 ^ { \prime \prime } \times 4 0 . 0 ^ { \prime } \text { long Culvert CPP, square edge headwall, } \mathrm { Ke } = 0 . 5 0 0}$
		Outlet Invert $=502.00^{\prime} \mathrm{S}=0.0125$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior	

Primary OutFlow Max=0.64 cfs @ 12.04 hrs HW=502.85' (Free Discharge)
—1=Culvert (Inlet Controls 0.64 cfs @ 2.02 fps)

Pond 5: Catch Basin 5

Inflow Area $=$	1.090 ac, Inflow Depth $=1.43^{\prime \prime}$	for 1 Year event
Inflow	$=$	$1.05 \mathrm{cfs} @$
Outflow	$=$	12.06 hrs, Volume $=$
Primary	$=$	12.130 af
		$1.05 \mathrm{cfs} @$
	12.06 hrs, Volume	0.130 af , Atten $=0 \%$, Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev=502.96' @ 12.06 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	502.50^{\prime}	$18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
		Outlet Invert= 502.00 $\mathrm{n}=0.013$ Corrugated $\mathrm{SE}=0.0125$ 	

Primary OutFlow Max=1.05 cfs @ 12.06 hrs HW $=502.96^{\prime}$ (Free Discharge)
—1=Culvert (Inlet Controls 1.05 cfs @ 2.30 fps)

Pond 6: Catch Basin 6

Inflow Area =	1.476 ac ,	Inflow Depth = 1.69"	for 1 Year even	
Inflow	2.09 cfs @	12.05 hrs , Volume=	0.208 af	
Outflow	2.09 cfs @	12.05 hrs , Volume=	0.208 af ,	Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary	2.09 cfs @	12.05 hrs , Volume=	0.208 af	

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= 503.16' @ 12.05 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	502.50^{\prime}	$18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Outlet Invert $=502.00^{\prime} \mathrm{S}=0.0125$
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior	

Primary OutFlow Max=2.09 cfs @ $12.05 \mathrm{hrs} \mathrm{HW}=503.16^{\prime} \quad$ (Free Discharge)

Pond 7: Catch Basin 7

Primary OutFlow Max=3.03 cfs @ 12.04 hrs HW=503.42' (Free Discharge)
—1=Culvert (Barrel Controls 3.03 cfs @ 3.80 fps)

Pond BIO 1: Bio-Retention Zone \#1

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=504.14' @ 13.34 hrs Surf.Area=2,981 sf Storage= 2,088 cf
Plug-Flow detention time $=69.5$ min calculated for 0.153 af (100% of inflow)
Center-of-Mass det. time $=69.5 \min (949.3-879.8)$

| Volume | Invert | Avail. Storage | Storage Description |
| :---: | ---: | ---: | ---: | :--- |
| $\# 1$ | 500.75^{\prime} | $14,283 \mathrm{cf}$ | Custom Stage Data (Prismatic)Listed below (Recaic) |

Elevation (feet)	Surf.Area (sq-ft)	Voids (\%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.75	2,600	40.0	0	0
501.50	2,600	20.0	390	390
504.00	2,600	20.0	1,300	1,690
504.01	2,600	100.0	26	1,716
504.50	4,000	100.0	1,617	3,333
50500	6,600	100.0	2,650	5,983
506.00	10,000	100.0	8,300	14,283

Device	Routing	Invert	Outlet Devices
\#1	Discarded	0.00^{\prime}	4.000 in/hr Soil Exfiltration over Surface area
\#2	Primary	504.50^{\prime}	$2.50^{\prime} \times 3.00^{\prime}$ Horiz. Orifice/Grate Limited to weir flow \quad C= $=0.600$

Discarded OutFlow Max=0.28 cfs @ 13.34 hrs HW=504.14' (Free Discharge)
-1=Soil Exfiltration (Exfiltration Controls 0.28 cfs)
Primary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=500.75^{\prime} \quad$ (Free Discharge)
L2=Orifice/Grate (Controls 0.00 cfs)

Pond C1: Road Culvert Storage

Inflow Area =	5.578 ac, Inflow Depth = 0.92"	for 1 Year event
Inflow	2.40 cfs @ 12.79 hrs, Volume=	0.428 af
Outflow	2.40 cfs @ 12.79 hrs, Volume=	0.428 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	2.40 cfs @ 12.79 hrs, Volume=	0.428 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=501.65' @ 12.79 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	501.00'	24.0" \times 150.0' long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert=499.75' $S=0.0083{ }^{\prime} / / \quad C c=0.900$ $n=0.013$ Corrugated $P E$, smooth interior

Primary OutFlow Max=2.40 cfs @ 12.79 hrs HW=501.65' (Free Discharge)
L-1=Culvert (Barrel Controls 2.40 cfs @ 4.08 fps)

Pond C2: Road Culvert Storage

Inflow Area =	0.819 ac , Inflow Depth $=1.27{ }^{\prime \prime}$	for 1 Year event
Inflow	1.25 cfs @ 12.08 hrs, Volume=	0.087 af
Outflow	1.25 cfs @ 12.08 hrs , Volume=	0.087 af, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary	1.25 cfs @ 12.08 hrs, Volume=	0.087 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=505.11' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	501.75^{\prime}	$15.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
		Outlet Invert $=500.25^{\prime} \quad \mathrm{S}=0.0375 \quad \%^{\prime} \quad \mathrm{Cc}=0.900$	

\#2 Device $1 \quad 505.00^{\prime} \quad 2.50^{\prime} \times 2.50^{\prime}$ Horiz. Orifice/Grate Limited to weir flow $\mathrm{C}=0.600$
Primary OutFlow Max=1.24 cfs @ 12.08 hrs HW=505.11' (Free Discharge)
$\mathcal{L}_{1}=$ Culvert (Passes 1.24 cfs of 9.78 cfs potential flow)

Pond Pond: Existing Pond

Inflow Area =	11.691 ac,	Inflow Depth > 0.71"	for 1 Year ev	
Inflow	2.62 cfs @	12.74 hrs , Volume=	0.689 af	
Outflow	0.00 cfs @	0.00 hrs , Volume=	0.000 af ,	Atten= 100%, Lag $=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=496.47' @ 48.00 hrs Surf.Area= $71,615 \mathrm{sf}$ Storage $=29,970 \mathrm{cf}$
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert Avail.Storage		Storage Description		
\#1	496.00' 1,3	8,750 cf	Custom Stage D	rregular)Li	w (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$
496.00	55,000	1,900.0	0	0	55,000
498.00	139,810	2,309.0	188,333	188,333	192,056
500.00	181,423	2,690.0	320,331	508,664	343,703
502.00	204,288	2,950.0	385,485	894,149	460,532
504.00	230,578	3,150.0	434,601	1,328,750	557,808

| Device | Routing | Invert | Outlet Devices | |
| :---: | :--- | ---: | :--- | :--- | :--- |
| $\# 1$ | Primary | 504.50 | Custom Weir/Orifice, C=2.62 | |
| | | | Head (feet) $0.001 .001 .50 \quad 2.00$ | |
| | | | Width (feet) 143.00150 .00155 .00 | 170.00 |

Primary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=496.00^{\prime}$ (Free Discharge)
—1=Custom Weir/Orifice (Controls 0.00 cfs)

Pond WQB1: Water Quality Basin \#1

Inflow Area =	2.744 ac ,	Inflow Depth = 1.75"	for 1 Year event
Inflow	4.78 cfs @	12.04 hrs , Volume=	0.399 af
Outflow	0.13 cfs @	17.09 hrs , Volume=	0.145 af, Atten= $97 \%, \mathrm{Lag}=303.0 \mathrm{~min}$
Primary =	0.13 cfs @	17.09 hrs , Volume=	0.145 af
Secondary $=$	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Peak Elev=501.95' @ 17.09 hrs Surf.Area=6,744 sf Storage= 13,652 cf

Plug-Flow detention time $=636.7$ min calculated for 0.145 af (36% of inflow)

Center-of-Mass det. time $=489.7 \min (1,282.9-793.2)$

Volume	Invert Avail.Storage Storage Description				
\#1	497.00'	' 31,756 cf Custom		tage Data (C	sted below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
497.00		900	0	0	900
498.00		1,450	1,164	1,164	1,463
500.00		2,500	3,903	5,067	2,559
501.50		5,500	5,854	10,921	5,577
502.00		6,900	3,093	14,014	6,984
504.00		11,000	17,741	31,756	11,137
Device	Routing	Invert	Outlet Devices		
\#1	Primary	$500.50{ }^{\prime}$	$18.0^{\prime \prime} \times 30$. CPP, mitere Outlet Inver $\mathrm{n}=0.013 \mathrm{C}$	ng Culvert conform to fill $00.00^{\prime} \mathrm{S}=0.0$ gated PE, sm	$\begin{aligned} & 0.700 \\ & C c=0.900 \end{aligned}$ terior
\#2	Device 1	501.50'	3.0" Vert.	e/Grate C=0	
\#3	Device 1	503.00^{\prime}	4.00 ' W x 1.	H Vert. Prima	rflow C= 0.600
\#4	Secondary	y 503.50'	10.0' long Head (feet) Coef. (English)	0 ' breadth B $0.40 \quad 0.60$ 2.492 .562	rested Rectangular .001 .201 .401 .60 2.682 .692 .67

Primary OutFlow Max=0.13 cfs @ 17.09 hrs HW=501.95' (Free Discharge)
-1=Culvert (Passes 0.13 cfs of 6.31 cfs potential flow)
-2=Orifice/Grate (Orifice Controls 0.13 cfs @ 2.73 fps)
-3=Primary Overflow (Controls 0.00 cfs)
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=497.00' (Free Discharge)
-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Time span $=0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 4801$ points Runoff by SCS TR-20 method, UH=SCS
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2-1: 2-1

Subcatchment 2-10: 2-10

Subcatchment 2-11: 2-11

Subcatchment 2-12: 2-12

Subcatchment 2-14a: 2-14a

Subcatchment 2-14c: 2-14c

Subcatchment 2-2.1: 2-2.1

Subcatchment 2-2.2: 2-2.2

Subcatchment 2-3: 2-3

Subcatchment 2-4: 2-4

Subcatchment 2-5: 2-5

Runoff Area=24,000 sf Runoff Depth=2.20"
Flow Length=40' Slope $=0.1000 \mathrm{l} / \mathrm{Tc}=3.6 \mathrm{~min} \quad \mathrm{CN}=72$ Runoff $=1.53 \mathrm{cfs} 0.101 \mathrm{af}$
Runoff Area=15,216 sf Runoff Depth=2.45" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=75$ Runoff $=1.00 \mathrm{cfs} 0.071 \mathrm{af}$

Runoff Area $=19,231$ sf Runoff Depth $=2.20^{\prime \prime}$
Flow Length=75' Slope $=0.1000$ ' $/ \mathrm{Tc}=8.9 \mathrm{~min} \quad \mathrm{CN}=72$ Runoff=1.02 cfs 0.081 af
Runoff Area=7,326 sf Runoff Depth=4.31"
Flow Length=132' $\mathrm{T} \mathbf{C}=2.4 \mathrm{~min} \mathrm{CN}=94$ Runoff $=0.90 \mathrm{cfs} 0.060$ af
Runoff Area=3,459 sf Runoff Depth=4.76" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.40 \mathrm{cfs} 0.032$ af

Runoff Area=3,459 sf Runoff Depth=4.76" $\mathrm{Tc}=5.0 \mathrm{~min} \quad \mathrm{CN}=98$ Runoff $=0.40$ cfs 0.032 af

Runoff Area=242,997 sf Runoff Depth=2.71"
Flow Length=951' Tc=53.8 min CN=78 Runoff=7.46 cfs 1.261 af
Runoff Area=35,686 sf Runoff Depth=3.27"
Flow Length=525' $\mathrm{Tc}=5.3 \mathrm{~min} \quad \mathrm{CN}=84$ Runoff $=3.20 \mathrm{cfs} 0.223$ af
Runoff Area=87,039 sf Runoff Depth $=2.71^{\prime \prime}$
Flow Length=537 ${ }^{1} \mathrm{TC}=28.5 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff $=3.68 \mathrm{cfs} 0.452$ af
Runoff Area=7,182 sf Runoff Depth=4.76" Flow Length $=340^{\circ} \quad \mathrm{Tc}=1.7 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.94 \mathrm{cfs} 0.065$ af

Runoff Area $=14,005$ sf Runoff Depth $=4.31^{\prime \prime}$ Flow Length=150' Slope=0.0130 '/' Tc=2.0 $\mathrm{min} \quad \mathrm{CN}=94$ Runoff=1.74 cfs 0.115 af

Subcatchment 2-6c: 2-6c

Subcatchment 2-6d: 2-6d

Subcatchment 2-7: 2-7
Runoff Area=6,917 sf Runoff Depth=4.76" $\mathrm{T} \mathbf{C}=7.5 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.74 \mathrm{cfs} 0.063$ af

Runoff Area=3,459 sf Runoff Depth=4.76" $T C=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.40$ cfs 0.032 af

Runoff Area=3,459 sf Runoff Depth=4.76" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.40 \mathrm{cfs} 0.032$ af

Runoff Area=29,800 sf Runoff Depth=2.71"
Flow Length=339' $\mathrm{Tc}=36.9 \mathrm{~min} \mathrm{CN}=78$ Runoff $=1.12$ cfs 0.155 af

Runoff Area $=15,382$ sf Runoff Depth $=4.42^{\prime \prime}$ Flow Length=183' Slope $=0.0160$ '/ Tc=2.1 $\mathrm{min} \quad \mathrm{CN}=95$ Runoff $=1.93 \mathrm{cfs} 0.130$ af

Pond 1: Catch Basin 1

Peak Elev=501.52' inflow=2.76 cfs 0.135 af $18.0^{\prime \prime} \times 75.0^{\prime}$ Culvert Outflow=2.76 cfs 0.135 af

Pond 2: Catch Basin 2

Peak Elev=504.02' Inflow=0.94 cfs 0.065 af $15.0^{\prime \prime} \times 195.0^{\prime}$ Culvert Outflow $=0.94 \mathrm{cfs} 0.065$ af

Pond 3: Catch Basin 3

Peak Elev=503.42' Inflow=3.02 cfs 0.212 af $15.0^{\prime \prime} \times 110.0^{\prime}$ Culvert Outflow=3.02 cfs 0.212 af

Pond 4: Catch Basin 4

Peak Elev=503.00' Inflow=1.26 cfs 0.092 af $18.0^{\prime \prime} \times 40.0^{\prime}$ Culvert Outlow=1.26 cfs 0.092 af

Peak Elev=503.19' Inflow=2.21 cfs 0.310 af 18.0 " $\times 40.0^{\prime}$ Culvert Outflow=2.21 cfs 0.310 af

Peak Elev=503.51' Inflow=4.17 cfs 0.460 af $18.0^{\prime \prime} \times 40.0^{\prime}$ Culvert Outflow=4.17 cfs 0.460 af

Peak Elev=503.93' Inflow=6.03 cfs 0.590 af $18.0^{\prime \prime} \times 10.0^{\prime}$ Culvert Outflow=6.03 cfs 0.590 af

Pond BIO 1: Bio-Retention Zone \#1 Peak Elev=504.68' Storage=4,137 cf Inflow=3.68 cfs 0.452 af Discarded $=0.46$ cfs 0.317 af Primary $=2.76$ cfs 0.135 af Outflow=3.21 cfs 0.452 af

Pond C1: Road Culvert Storage

Pond C2: Road Culvert Storage

Pond Pond: Existing Pond
Peak Elev=497.29' Storage=101,715 cf Inflow=11.16 cfs 2.336 af Outflow=0.00 cfs 0.000 af

Pond WQB1: Water Quality Basin \#1 Peak Elev=503.19' Storage=23,535 cf Inflow=9.82 cfs 0.874 af Primary $=1.33$ cfs 0.617 af Secondary $=0.00$ cfs 0.000 af Outflow=1.33 cfs 0.617 af

Total Runoff Area $=\mathbf{1 2 . 1 3 2}$ ac Runoff Volume $=2.991$ af Average Runoff Depth $=2.96$ " 73.24\% Pervious Area $=8.886$ ac 26.76% Impervious Area $=3.246$ ac

Subcatchment 2-1: 2-1

Runoff $=1.53 \mathrm{cfs} @ 12.06 \mathrm{hrs}$, Volume= $\quad 0.101 \mathrm{af}$, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall=5.00"

Area (sf)	CN	Description			
24,000	72	Woods/grass comb., Good, HSG C			
24,000	Pervious Area				
Tc Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Subcatchment 2-10: 2-10

Runoff $=1.00$ cfs @ 12.09 hrs, Volume= 0.071 af, Depth= $2.45^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10 Year Rainfall=5.00"

	Area (sf)	CN	escription		
	$\begin{array}{r} 14,416 \\ 800 \\ \hline \end{array}$	$\begin{aligned} & \hline 74 \\ & 98 \\ & \hline \end{aligned}$	>75\% Grass cover, Good, HSG C Paved parking \& roofs		
	$\begin{array}{r} 15,216 \\ 14,416 \\ 800 \end{array}$	75	Weighted Average Pervious Area Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 2-11: 2-11
Runoff $=\quad 1.02$ cfs @ 12.13 hrs , Volume= $\quad 0.081$ af, Depth= $2.20^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10 Year Rainfall=5.00"

Subcatchment 2-12: 2-12
Runoff $=0.90 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.060$ af, Depth= 4.31"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall $=5.00^{\prime \prime}$

Area (sf)6,2261,100		CN Description		
			Paved parking \& roofs $>75 \%$ Grass cover, Good, HSG C	
	$\begin{aligned} & 7,326 \\ & 1,100 \\ & 6,226 \end{aligned}$		Weighted Average Pervious Area Impervious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	$\begin{array}{rr}\begin{array}{c}\text { Velocity } \\ \text { (ft/sec) }\end{array} & \begin{array}{r}\text { Capacity } \\ \text { (cfs) }\end{array}\end{array}$	Description
0.9	15	0.4000	0.27	Sheet Flow, 1 Grass: Dense $\mathrm{n}=0.240 \mathrm{P} 2=3.25^{\prime \prime}$
1.5	117	0.0170	- 1.34	Sheet Flow, Pavement Smooth surfaces $n=0.011 \quad \mathrm{P} 2=3.25^{\prime \prime}$
2.4	132	Total		

Subcatchment 2-14a: 2-14a

Runoff $=0.40 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=0.032 \mathrm{af}$, Depth= $4.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall=5.00"

Subcatchment 2-14c: 2-14c

Runoff $=0.40 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 0.032$ af, Depth= $4.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall $=5.00^{\prime \prime}$

Area (sf)	CN	Description
3,459	98	Paved parking \& roofs
3,459		Impervious Area

Tc (min)	Length (feet)	Slope (ft/f)	Velocity (ft/sec)
5.0		Capacity (cfs)	Description
		Direct Entry,	

Subcatchment 2-2.1: 2-2.1
Runoff $=7.46$ cfs @ 12.73 hrs, Volume= $\quad 1.261$ af, Depth= $2.71^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall=5.00"

Subcatchment 2-2.2: 2-2.2
Runoff $=3.20$ cfs @ 12.08 hrs, Volume= 0.223 af, Depth= $3.27^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 10 Year Rainfall=5.00"

Subcatchment 2-3: 2-3
Runoff $=3.68 \mathrm{cfs} @ 12.39 \mathrm{hrs}$, Volume= $\quad 0.452 \mathrm{af}$, Depth= 2.711
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10 Year Rainfall=5.00"

Area (sf) 65,539 21,500		CN	Woods/grass comb., Good, HSG C Paved parking \& roofs		
	$\begin{aligned} & 87,039 \\ & 65,539 \\ & 21,500 \end{aligned}$	78 V	Weighted Average Pervious Area Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.4	150	0.0500	0.12		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.25^{\prime \prime}$
2.3	140	0.0420	1.02		Shallow Concentrated Flow, Woods Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
1.2	142	0.0100	2.03		Shallow Concentrated Flow, Parking area Paved $\mathrm{Kv}=20.3 \mathrm{fps}$
0.6	35	0.0200	0.99		Shallow Concentrated Flow, Grass Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
4.0	70	0.0010	0.29	3.60	Channel Flow, Area= 12.5 sf Perim=26.0' $\mathrm{r}=0.48^{\prime}$ $\mathrm{n}=0.100$ Very weedy reaches w/pools

Subcatchment 2-4: 2-4
Runoff $=\quad 0.94$ cfs @ 12.02 hrs , Volume $=\quad 0.065$ af, Depth= 4.76"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10 Year Rainfall $=5.00$ "

Subcatchment 2-5: 2-5

Runoff $=1.74$ cfs @ 12.03 hrs , Volume= $\quad 0.115$ af, Depth= $4.31^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 10 Year Rainfall=5.00"

Subcatchment 2-6a-b: 2-6a-b

Runoff $=\quad 0.74$ cfs @ 12.10 hrs , Volume= $\quad 0.063$ af, Depth= $4.76^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall=5.00"

Area (sf)	CN	Description
6,917	98	Paved parking \& roofs
6,917		Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.5					Direct Entr

Subcatchment 2-6c: 2-6c

Runoff $=0.40 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= 0.032 af, Depth= $4.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall=5.00"

Area (sf)		CN	Description		
	3,459	98	Paved park	ing \& roofs	
	3,459		Impervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Subcatchment 2-6d: 2-6d
Runoff $=0.40 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=0.032 \mathrm{af}$, Depth= $4.76{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall=5.00"

	rea (sf)	CN Description			
	3,459	98 P	aved park	ing \& roofs	
3,459		Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Subcatchment 2-7: 2-7

Runoff $=1.12$ cfs @ 12.51 hrs, Volume= $\quad 0.155$ af, Depth= $2.71^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 10 Year Rainfall $=5.00^{\prime \prime}$

Area (sf)	CN	Description
5,002	98	Paved parking \& roofs
24,798	74	$>75 \%$ Grass cover, Good, HSG C
29,800	78	Weighted Average
24,798		Pervious Area
5,002		Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
20.4	150	0.0500	0.12		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.25$ "
15.8	100	0.0420	0.11		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.25^{\prime \prime}$
0.7	89	0.0100	2.03		Shallow Concentrated Flow, Pavement Paved Kv=20.3 fps

Subcatchment 2-8: 2-8

Runoff $=1.25 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.088$ af, Depth= $4.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Type III 24-hr 10 Year Rainfall $=5.00$ "

Subcatchment 2-9: 2-9

Runoff $=1.93 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.130 \mathrm{af}$, Depth= $4.42^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10 Year Rainfall=5.00"

Pond 1: Catch Basin 1

Inflow Area =	1.998 ac,	Inflow Depth $=0.81{ }^{\prime \prime}$	for 10 Year event
Inflow	2.76 cfs @	12.55 hrs , Volume=	0.135 af
Outflow	2.76 cfs @	12.55 hrs , Volume=	0.135 af , Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	2.76 cfs @	12.55 hrs , Volume=	0.135 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 501.52' @ 12.55 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	500.75'	$18.0^{\prime \prime} \times 75.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=499.75^{\prime} \quad \mathrm{S}=0.0133^{\prime} / / \quad \mathrm{Cc}=0.900$ $n=0.013$ Corrugated $P E$, smooth interior

Primary OutFlow Max=2.76 cfs @ 12.55 hrs HW=501.52' (Free Discharge)
—1=Culvert (Inlet Controls 2.76 cfs @ 3.00 fps)

Pond 2: Catch Basin 2

Inflow Area =	0.165 ac , Inflow Depth $=4.76{ }^{\prime \prime}$	for 10 Year event
Inflow	0.94 cfs @ 12.02 hrs, Volume=	0.065 af
Outflow	0.94 cfs @ 12.02 hrs, Volume=	0.065 af, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary	0.94 cfs @ 12.02 hrs , Volume=	0.065 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= 504.02' @ 12.02 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	503.50'	$15.0^{\prime \prime} \times 195.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=502.50$ ' $S=0.0051$ '// $C c=0.900$ $n=0.013$ Corrugated $P E$, smooth interior

Primary OutFlow Max=0.94 cfs @ 12.02 hrs HW=504.02' (Free Discharge)
—1=Culvert (Barrel Controis $0.94 \mathrm{cfs} @ 2.88 \mathrm{fps}$)

Pond 3: Catch Basin 3

Inflow Area $=$	0.566 ac , Inflow Depth $=4.50 "$	for 10 Year event
Inflow	$=$	$3.02 \mathrm{cfs} @$
Outflow	$=$	$3.02 \mathrm{cfs} @$
Primary, Volume $=$	0.212 af	
	$=$	$3.02 \mathrm{cfs} @$
	12.03 hrs , Volume $=$	0.212 af , Atten= $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= 503.42' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.50'	$15.0^{\prime \prime} \times 110.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert= 501.60' $\mathrm{S}=0.0082^{\prime} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=3.02 cfs @ $12.03 \mathrm{hrs} H W=503.42^{\prime} \quad$ (Free Discharge)
セ1=Culvert (Barrel Controls $3.02 \mathrm{cfs} @ 4.34 \mathrm{fps}$)

Pond 4: Catch Basin 4

Inflow Area =	0.248 ac , Inflow Depth $=4.45{ }^{\prime \prime}$	for 10 Year event
Inflow	1.26 cfs @ 12.04 hrs, Volume=	0.092 af
Outflow	1.26 cfs @ 12.04 hrs, Volume=	0.092 af, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary	1.26 cfs @ 12.04 hrs, Volume=	0.092 af
Routing by St Peak Elev= 5	method, Time Span= 0.00-48.00 @ 12.04 hrs	$\mathrm{dt}=0.01 \mathrm{hrs}$

Device	Routing	Invert	Outlet Devices
\#1	Primary	$502.50{ }^{\prime}$	$18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=502.00^{\prime} \quad \mathrm{S}=0.0125 \mathrm{l} / \mathrm{Cc}=0.900$ $n=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=1.26 cfs @ 12.04 hrs HW=503.00' (Free Discharge)
—1=Culvert (Inlet Controls 1.26 cfs @ 2.42 fps)

Pond 5: Catch Basin 5

Inflow Area =	1.090 ac	flow Depth $=3.41{ }^{\prime \prime}$	for 10 Year event
Inflow	2.21 cfs @	12.07 hrs , Volume=	0.310 af
Outflow	2.21 cfs @	12.07 hrs , Volume=	0.310 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	2.21 cfs @	12.07 hrs , Volume=	0.310 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Peak Elev=503.19' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.50'	$18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=502.00 \quad \mathrm{~S}=0.0125{ }^{\prime} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=2.21 cfs @ 12.07 hrs HW=503.19' (Free Discharge)
41=Culvert (Barrel Controls 2.21 cfs @ 4.12 fps)

Pond 6: Catch Basin 6

Inflow Area $=$	1.476 ac, Inflow Depth $=3.74 "$	for 10 Year event
Inflow $=$	$4.17 \mathrm{cfs} @$	12.05 hrs, Volume $=$
Outflow	$=$	$4.17 \mathrm{cfs} @ 12.460 \mathrm{af}$
Primary	$=$	$4.17 \mathrm{cfs} @ 12.05 \mathrm{hrs}$, Volume $=$
	12.05 hrs, Volume $=$	0.460 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=503.51' @ 12.05 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	502.50	$18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
		Outlet Invert $=502.00^{\prime} \mathrm{S}=0.01255^{\prime \prime} \quad \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE , smooth interior	

Primary OutFlow Max=4.17 cfs @ 12.05 hrs HW=503.51' (Free Discharge)
—1=Culvert (Barrel Controls 4.17 cfs @ 4.67 fps)

Pond 7: Catch Basin 7

Inflow Area $=$	1.829 ac, Inflow Depth $=3.87$ "	for 10 Year event
Inflow	$=$	$6.03 \mathrm{cfs} @$
Outflow	$=$	$6.03 \mathrm{cfs} @$
12.04 hrs, Volume $=$	0.590 af	
Primary	$=$	$6.03 \mathrm{cfs} @ 12.04 \mathrm{hrs}$, Volume
		12.04 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Peak Elev=503.93' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.50'	$18.0^{\prime \prime} \times 10.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=502.35$ ' $\mathrm{S}=0.0150 \mathrm{l} / \mathrm{Cc}=0.900$ $n=0.013$ Corrugated PE, smooth interior

Primary OutFlow Max=6.03 cfs @ 12.04 hrs HW=503.93' (Free Discharge)
—1=Culvert (Barrel Controls 6.03 cfs @ 4.46 fps)

Pond BIO 1: Bio-Retention Zone \#1

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Peak Elev=504.68' @ 12.55 hrs Surf.Area= $4,936 \mathrm{sf}$ Storage= 4,137 cf
Plug-Flow detention time $=73.1 \mathrm{~min}$ calculated for 0.451 af (100% of inflow) Center-of-Mass det. time $=73.1 \mathrm{~min}(921.0-848.0)$

Volume Invert Avail.Storage Storage Description
$\# 1 \quad 500.75^{\prime} \quad 14,283 \mathrm{cf}$ Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Voids (\%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.75	2,600	40.0	0	0
501.50	2,600	20.0	390	390
504.00	2,600	20.0	1,300	1,690
504.01	2,600	100.0	26	1,716
504.50	4,000	100.0	1,617	3,333
505.00	6,600	100.0	2,650	5,983
506.00	10,000	100.0	8,300	14,283

Device	Routing	Invert	Outlet Devices
\#1	Discarded	0.00^{\prime}	4.000 in/hr Soil Exfiltration over Surface area
\#2	Primary	504.50^{\prime}	$\mathbf{2 . 5 0} \times \mathbf{3 . 0 0 ^ { \prime }}$ Horiz. Orifice/Grate \quad Limited to weir flow $\mathrm{C}=0.600$

Discarded OutFlow Max=0.46 cfs @ 12.55 hrs HW=504.68' (Free Discharge)
—1 $_{1=S o i l}$ Exfiltration (Exfiltration Controls 0.46 cfs)
Primary OutFlow Max=2.74 cfs @ $12.55 \mathrm{hrs} \mathrm{HW}=504.68^{\prime} \quad$ (Free Discharge)
—2=Orifice/Grate (Weir Controls 2.74 cfs @ 1.39 fps)

Pond C1: Road Culvert Storage

Primary OutFlow Max=7.46 cfs @ $12.73 \mathrm{hrs} \mathrm{HW}=502.22^{\prime} \quad$ (Free Discharge)
—1=Culvert (Barrel Controls 7.46 cfs @ 5.33 fps)

Pond C2: Road Culvert Storage

Inflow Area $=$	0.819 ac , Inflow Depth $=3.27 "$	for 10 Year event
Inflow	$=$	$3.20 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume=
Outflow	$=$	$3.20 \mathrm{cfs} @$
Primary	$=$	$3.20 \mathrm{cfs} @$
	12.08 hrs , Volume	0.223 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=505.21' @ 12.08 hrs

Pond Pond: Existing Pond

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Peak Elev= 497.29' @ 48.00 hrs Surf.Area= 105,292 sf Storage= 101,715 cf
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	A Avail.Storage		Storage Description		
\#1	496.00		8,750 cf	Custom Stage D	regular)Li	ow (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$
496.00		55,000	1,900.0	0	0	55,000
498.00		139,810	2,309.0	188,333	188,333	192,056
500.00		181,423	2,690.0	320,331	508,664	343,703
502.00		204,288	2,950.0	385,485	894,149	460,532
504.00		230,578	3,150.0	434,601	1,328,750	557,808
Device R	Routing	Invert Outlet Devices				
\#1 P	Primary		50' $\begin{array}{ll}\text { Cust } \\ & \text { Head } \\ \\ \text { Width }\end{array}$	om Weir/Orifice, (feet) 0.001 .00 (feet) 143.00	$\begin{array}{lll} \hline 2.62 \\ 0 & 2.00 \\ 0 & 155.00 & 178 \end{array}$	
Primary $\leftarrow_{1=C u s}$	OutFlow stom Weir	$\begin{aligned} & \text { Max }=0.00 \\ & \text { ir/Orifice } \end{aligned}$	fs @ 0.00 Controls 0.00	$\begin{aligned} & \text { hrs HW=496.00' } \\ & 00 \mathrm{cfs} \text {) } \end{aligned}$	ee Discharg	

Pond WQB1: Water Quality Basin \#1

Inflow Area $=$	2.744 ac, Inflow Depth $=3.82 "$	for 10 Year event	
Inflow $=$	$9.82 \mathrm{cfs} @$	12.04 hrs, Volume $=$	0.874 af
Outflow $=$	1.33 cfs @	12.99 hrs, Volume $=$	0.617 af, Atten= $=86 \%$, Lag $=57.0 \mathrm{~min}$
Primary $=$	$1.33 \mathrm{cfs} @$	12.99 hrs, Volume $=$	0.617 af
Secondary $=$	$0.00 \mathrm{cfs} @$	0.00 hrs, Volume $=$	0.000 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= 503.19' @ 12.99 hrs Surf.Area= $9,216 \mathrm{sf}$ Storage= $23,535 \mathrm{cf}$
Plug-Flow detention time $=564.7$ min calculated for 0.617 af (71% of inflow)

Center-of-Mass det. time $=469.3 \mathrm{~min}(1,250.5-781.1)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	497.00^{\prime}	$31,756 \mathrm{cf}$	Custom Stage Data (Conic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
497.00	900	0	0	900
498.00	1,450	1,164	1,164	1,463
500.00	2,500	3,903	5,067	2,559
501.50	5,500	5,854	10,921	5,577
502.00	6,900	3,093	14,014	6,984
504.00	11,000	17,741	31,756	11,137

Device	Routing	Invert	Outlet Devices
\#1	Primary	500.50'	18.0" $\times 30.0$ ' long Culvert
			CPP, mitered to conform to fill, $\mathrm{Ke}=0.700$
			Outlet Invert= 500.00' $\mathrm{S}=0.0167 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior
\#2	Device 1	501.50'	3.0" Vert. Orifice/Grate C=0.600
\#3	Device 1	$503.00{ }^{\prime}$	4.00' W x 1.00' H Vert. Primary Overflow C= 0.600
\#4	Secondary	503.50'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Primary OutFlow Max=1.32 cfs @ $12.99 \mathrm{hrs} \mathrm{HW}=503.19^{\prime} \quad$ (Free Discharge)
L1=Culvert (Passes 1.32 cfs of 10.45 cfs potential flow)

- 2=Orifice/Grate (Orifice Controls 0.30 cfs @ 6.02 fps)
—3=Primary Overflow (Orifice Controls 1.03 cfs @ 1.38 fps)
Secondary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW}=497.00^{\prime}$ (Free Discharge)
44=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Time span $=0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 4801$ points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2-1: 2-1

Subcatchment 2-10: 2-10

Subcatchment 2-11: 2-11
Flow Length $=40^{\prime}$ Slope $=0.1000$ ' $/ \mathrm{Tc}=3.6 \mathrm{~min} \quad \mathrm{CN}=72$ Runoff $=3.61 \mathrm{cfs} 0.236$ af
Runoff Area $=15,216$ sf Runoff Depth $=5.50^{\prime \prime}$ $\mathrm{T}=6.0 \mathrm{~min} \mathrm{CN}=75$ Runoff $=2.24 \mathrm{cfs} 0.160$ af

Runoff Area=19,231 sf Runoff Depth=5.14"
Flow Length=75' Slope=0.1000 '/' Tc=8.9 min CN=72 Runoff=2.40 cfs 0.189 af

Subcatchment 2-12: 2-12

Subcatchment 2-14a: 2-14a

Subcatchment 2-14c: 2-14c

Subcatchment 2-2.1: 2-2.1

Subcatchment 2-2.2: 2-2.2

Subcatchment 2-3: 2-3

Subcatchment 2-4: 2-4

Subcatchment 2-5: 2-5

Runoff Area=7,326 sf Runoff Depth=7.78"
Flow Length=132' $\mathrm{Tc}=2.4 \mathrm{~min} \quad \mathrm{CN}=94$ Runoff=1.57 cfs 0.109 af

Runoff Area=3,459 sf Runoff Depth=8.26" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.69 \mathrm{cfs} 0.055$ af

Runoff Area=3,459 sf Runoff Depth=8.26" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.69 \mathrm{cfs} 0.055 \mathrm{af}$

Runoff Area=242,997 sf Runoff Depth=5.85" Flow Length=951' $\quad \mathrm{C}=53.8 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff= 16.00 cfs 2.722 af

Runoff Area=35,686 sf Runoff Depth $=6.58^{\prime \prime}$ Flow Length=525' Tc=5.3 $\mathrm{min} \quad \mathrm{CN}=84$ Runoff= 6.25 cfs 0.449 af

Runoff Area=87,039 sf Runoff Depth=5.85"
Flow Length=537' Tc=28.5 min CN=78 Runoff=7.88 cfs 0.975 af
Runoff Area=7,182 sf Runoff Depth=8.26"
Flow Length=340' Tc=1.7 $\mathrm{min} \mathrm{CN}=98$ Runoff $=1.60 \mathrm{cfs} 0.113$ af
Runoff Area=14,005 sf Runoff Depth=7.78"
Flow Length=150' Slope=0.0130 '/' TC=2.0 min CN=94 Runoff=3.05 cfs 0.208 af

Runoff Area=6,917 sf Runoff Depth=8.26" Tc=7.5 min CN=98 Runoff $=1.26$ cfs 0.109 af

Runoff Area $=3,459$ sf Runoff Depth $=8.26^{\prime \prime}$ $\mathrm{T} \mathbf{c}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.69 \mathrm{cfs} 0.055 \mathrm{af}$

Runoff Area=3,459 sf Runoff Depth=8.26" $\mathrm{Tc}=5.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.69 \mathrm{cfs} 0.055$ af

Runoff Area $=29,800$ sf Runoff Depth $=5.85{ }^{\prime \prime}$
Flow Length $=339^{\prime} \quad \mathrm{T} \mathbf{c}=36.9 \mathrm{~min} \quad \mathrm{CN}=78$ Runoff $=2.39 \mathrm{cfs} 0.334$ af

Runoff Area=15,382 sf Runoff Depth=7.90"
Flow Length=183' Slope=0.0160 '/ Tc=2.1 $\mathrm{min} \quad \mathrm{CN}=95$ Runoff $=3.35 \mathrm{cfs} 0.232$ af
Pond 1: Catch Basin 1

Pond 2: Catch Basin 2

Pond 3: Catch Basin 3

Pond 4: Catch Basin 4

Pond 5: Catch Basin 5

Pond 6: Catch Basin 6

Pond 7: Catch Basin 7

Pond C1: Road Culvert Storage
Peak Elev=503.12' Inflow=16.00 cfs 2.722 af 24.0 " $\times 150.0^{\prime}$ Culvert Outflow $=16.00 \mathrm{cfs} 2.722$ af

Peak Elev=505.33' Inflow=6.25 cfs 0.449 af Outflow $=6.25 \mathrm{cfs} 0.449$ af

Pond Pond: Existing Pond
Peak Elev=498.30' Storage=231,267 cf Inflow=29.17 cfs 5.309 af Outflow $=0.00$ cfs 0.000 af

Pond WQB1: Water Quality Basin \#1 Peak Elev=503.71' Storage=28,664 of Inflow=17.64 cfs 1.639 af Primary $=8.03$ cfs 1.320 af Secondary $=2.42$ cfs 0.061 af Outflow=10.45 cfs 1.380 af

Total Runoff Area $=12.132$ ac Runoff Volume $=6.209$ af Average Runoff Depth $=6.14^{\prime \prime}$ 73.24\% Pervious Area $=8.886$ ac 26.76% Impervious Area $=3.246$ ac

Subcatchment 2-1: 2-1

Runoff $=3.61 \mathrm{cfs} @ 12.05 \mathrm{hrs}$, Volume= $\quad 0.236 \mathrm{af}$, Depth= $5.14^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall $=8.50$ "

Subcatchment 2-10: 2-10

Runoff $=\quad 2.24 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 0.160$ af, Depth= $5.50^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.50"

	Area (sf)	CN	>75\% Grass cover, Good, HSG C Paved parking \& roofs		
	$\begin{array}{r} 14,416 \\ 800 \\ \hline \end{array}$				
	$\begin{array}{r} 15,216 \\ 14,416 \\ 800 \end{array}$	75	Weighted Pervious A Impervious	$\begin{aligned} & \text { verage } \\ & \text { ea } \\ & \text { Area } \end{aligned}$	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 2-11: 2-11

Runoff $=2.40$ cfs @ 12.13 hrs , Volume= $\quad 0.189$ af, Depth= $5.14{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall $=8.50^{\prime \prime}$

Subcatchment 2-12: 2-12

Runoff = $\quad 1.57 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.109 \mathrm{af}$, Depth= $7.78{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall $=8.50$

	Area (sf)	CN	Description		
	$\begin{aligned} & 6,226 \\ & 1,100 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 74 \\ & \hline \end{aligned}$	Paved parking \& roofs $>75 \%$ Grass cover, Good, HSG C		
	$\begin{aligned} & 7,326 \\ & 1,100 \\ & 6,226 \end{aligned}$	94 Weighted Average Pervious Area Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
0.9	15	0.4000	0.27		Sheet Flow, 1 Grass: Dense $n=0.240 \quad \mathrm{P} 2=3.25^{\prime \prime}$
1.5	117	0.0170	1.34		Sheet Flow, Pavement Smooth surfaces $n=0.011 \quad \mathrm{P} 2=3.25^{\prime \prime}$
2.4	132	Total			

Subcatchment 2-14a: 2-14a

Runoff $=\quad 0.69$ cfs @ 12.07 hrs, Volume= 0.055 af, Depth= $8.26{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100 Year Rainfall $=8.50$ "

Subcatchment 2-14c: 2-14c
Runoff $=0.69$ cfs @ 12.07 hrs , Volume= $\quad 0.055$ af, Depth= $8.2^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100 Year Rainfall=8.50"

Area (sf)	CN	Description
3,459	98	Paved parking \& roofs
3,459		Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\min) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry

Subcatchment 2-2.1: 2-2.1

Runoff $=16.00$ cfs @ 12.73 hrs , Volume= $\quad 2.722$ af, Depth= $5.85^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.50"

Subcatchment 2-2.2: 2-2.2
Runoff $=6.25$ cfs @ 12.08 hrs, Volume= $\quad 0.449$ af, Depth= $6.58^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall= $=8.50^{\prime \prime}$

$5.3 \quad 525$ Total

Subcatchment 2-3: 2-3

Runoff $=7.88$ cfs @ 12.38 hrs , Volume= 0.975 af, Depth= $5.85{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall=8.50"

Area (sf)		CN Description			
$\begin{aligned} & 65,539 \\ & 21,500 \end{aligned}$			Woods/grass comb., Good, HSG C Paved parking \& roofs		
	$\begin{aligned} & 87,039 \\ & 65,539 \\ & 21,500 \end{aligned}$	78	eighted ervious A pervious	verage ea Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.4	150	0.0500	0.12		Sheet Flow, Woods Woods: Light underbrush $n=0.400 \quad P 2=3.25^{\prime \prime}$
2.3	140	0.0420	1.02		Shallow Concentrated Flow, Woods Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
1.2	142	0.0100	2.03		Shallow Concentrated Flow, Parking area Paved Kv= 20.3 fps
0.6	35	0.0200	0.99		Shallow Concentrated Flow, Grass Short Grass Pasture Kv=7.0 fps
4.0	70	0.0010	0.29	3.60	Channel Flow, Area= 12.5 sf Perim=26.0'r=0.48' $\mathrm{n}=0.100$ Very weedy reaches w/pools

$28.5 \quad 537$ Total

Subcatchment 2-4: 2-4

Runoff $=1.60 \mathrm{cfs}$ @ 12.02 hrs , Volume= $\quad 0.113$ af, Depth= $8.26^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall=8.50"

Area (sf)		CN	Description		
	7,182	98	aved park	ing \& roofs	
7,182		Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (feet) } \end{aligned}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
0.9	100	0.0400	1.83		Sheet Flow, Pavement Smooth surfaces $n=0.011 \quad P 2=3.25^{\prime \prime}$
0.4	150	0.0800	5.74		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
0.4	90	0.0375	3.93		Shallow Concentrated Flow, Pavement Paved $\mathrm{Kv}=20.3 \mathrm{fps}$
1.7	340	Total			

Subcatchment 2-5: 2-5

Runoff $=\quad 3.05 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 0.208 \mathrm{af}$, Depth= $7.78^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100 Year Rainfall $=8.50^{\prime \prime}$

Subcatchment 2-6a-b: 2-6a-b

Runoff = 1.26 cfs @
12.10 hrs , Volume=
0.109 af, Depth $=8.26^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall=8.50"

Area (sf)	CN	Description
6,917	98	Paved parking \& roofs
6,917	Impervious Area	

Tc (min)	Length (feet)	Slope (ft/ft) $)$	Velocity (ft/sec)
7.5	Capacity (cfs)	Description	

Subcatchment 2-6c: 2-6c

Runoff $=0.69$ cfs @ 12.07 hrs , Volume= $\quad 0.055$ af, Depth= $8.26{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall=8.50"

Area (sf) CN Description					
3,459		98	Paved parking \& roofs		
	3,459		mpervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description

Subcatchment 2-6d: 2-6d
Runoff $=0.69$ cfs @ 12.07 hrs, Volume= 0.055 af, Depth= $8.26^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs
Type III 24-hr 100 Year Rainfall $=8.50$

Area (sf) CN Description					
	3,459		aved park	ing \& roofs	
	3,459		pervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

Subcatchment 2-7: 2-7
Runoff $=2.39$ cfs @ 12.50 hrs , Volume= $\quad 0.334$ af, Depth= $5.85^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100 Year Rainfall=8.50"

Area (sf)	CN	Description
5,002	98	Paved parking \& roofs
24,798	74	$>75 \%$ Grass cover, Good, HSG C
29,800	78	Weighted Average
24,798		Pervious Area
5,002		Impervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.4	150	0.0500	0.12		Sheet Flow, Woods
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.25{ }^{\prime \prime}$
15.8	100	0.0420	0.11		Sheet Flow, Woods
					Woods: Light underbrush $\mathrm{n}=0.400 \mathrm{P} 2=3.25{ }^{\prime \prime}$
0.7	89	0.0100	2.03		Shallow Concentrated Flow, Pavement Paved Kv= 20.3 fps
36.9	339	Total			

Subcatchment 2-8: 2-8

Runoff $=2.15$ cfs @ 12.03 hrs , Volume= $\quad 0.154$ af, Depth= $8.1^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall $=8.50$ "

Subcatchment 2-9: 2-9

Runoff $=3.35 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume $=0.232$ af, Depth= $7.90^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100 Year Rainfall $=8.50^{\prime \prime}$

Pond 1: Catch Basin 1

Inflow Area =	1.998 ac,	nflow Depth = 3.14"	for 100 Year event
Inflow	7.18 cfs @	12.44 hrs, Volume=	0.523 af
Outflow	7.18 cfs @	12.44 hrs , Volume=	0.523 af, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary	7.18 cfs @	12.44 hrs , Volume=	0.523 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 502.20' @ 12.44 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	$500.75{ }^{\prime}$	$18.0^{\prime \prime} \times 75.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=499.75$ ' $\mathrm{S}=0.0133 \mathrm{I} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=7.18 cfs @ 12.44 hrs HW=502.20' (Free Discharge)
—1=Culvert (Inlet Controls 7.18 cfs @ 4.10 fps)

Pond 2: Catch Basin 2

Inflow Area $=$	0.165 ac, Inflow Depth $=8.26 "$	for	100 Year event
Inflow	$=$	$1.60 \mathrm{cfs} @$	12.02 hrs, Volume=
Outflow	$=$	$1.60 \mathrm{cfs} @$	12.02 hrs , Volume
Primary	$=$	$1.60 \mathrm{cfs} @$	12.02 hrs , Volume=

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev= 504.19' @ 12.02 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	503.50'	$15.0^{\prime \prime} \times 195.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert= 502.50' $\mathrm{S}=0.0051 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=1.60 cfs @ 12.02 hrs HW=504.19' (Free Discharge)
—1=Culvert (Barrel Controls $1.60 \mathrm{cfs} @ 3.31 \mathrm{fps}$)

Pond 3: Catch Basin 3

Inflow Area $=$	0.566 ac, Inflow Depth $=7.99 "$	for 100 Year event	
Inflow	$=$	$5.23 \mathrm{cfs} @$	12.03 hrs, Volume=
Outflow	$=$	$5.23 \mathrm{cfs} @$	12.03 hrs , Volume
Primary	0.377 af		
	$5.23 \mathrm{cfs} @$	12.03 hrs , Volume $=$	0.377 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=503.91' @ 12.03 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.50'	$15.0^{\prime \prime} \times 110.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=501.60^{\prime} \quad S=0.0082^{\prime} / \prime \quad C c=0.900$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=5.23 cfs @ $12.03 \mathrm{hrs} \mathrm{HW}=503.91^{\prime} \quad$ (Free Discharge)
—1=Culvert (Inlet Controls 5.23 cfs @ 4.26 fps)

Pond 4: Catch Basin 4

Inflow Area =	0.248 ac ,	Inflow Depth = 7.93"	for 100 Year event
Inflow	2.19 cfs @	12.04 hrs, Volume=	0.164 af
Outflow	2.19 cfs @	12.04 hrs, Volume=	0.164 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	2.19 cfs @	12.04 hrs, Volume=	0.164 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=503.18' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.50'	$18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert=502.00' S=0.0125 '/' Cc= 0.900 $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=2.19 cfs @ 12.04 hrs HW=503.18' (Free Discharge)
—1=Culvert (Barrel Controls 2.19 cfs @ 4.11 fps)

Pond 5: Catch Basin 5

Inflow Area =	1.090 ac, Inflow Depth $=6.68{ }^{\prime \prime}$	for 100 Year event
Inflow	4.06 cfs @ 12.07 hrs, Volume=	0.607 af
Outflow	4.06 cfs @ 12.07 hrs, Volume=	0.607 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	4.06 cfs @ 12.07 hrs, Volume=	0.607 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=503.49' @ 12.07 hrs
Device Routing Invert Outlet Devices
\#1 Primary $502.50^{\prime} 18.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
Outlet Invert=502.00' S=0.0125 '/' Cc= 0.900
$\mathrm{n}=0.013$ Corrugated PE, smooth interior
Primary OutFlow Max=4.05 cfs @ 12.07 hrs HW=503.49' (Free Discharge)
1=Culvert (Barrel Controls 4.05 cfs @ 4.64 fps)

Pond 6: Catch Basin 6

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=504.01' @ 12.05 hrs

Primary OutFlow Max=7.39 cfs @ $12.05 \mathrm{hrs} \mathrm{HW}=504.01^{\prime} \quad$ (Free Discharge)
—1=Culvert (Inlet Controls 7.39 cfs @ 4.18 fps)

Pond 7: Catch Basin 7

Inflow Area $=$	1.829 ac, Inflow Depth $=7.23 "$	for	100 Year event
Inflow	$=$	$10.63 \mathrm{cfs} @$	12.04 hrs, Volume=
Outflow	$=$	$10.63 \mathrm{cfs} @$	12.04 hrs , Volume=
Primary	$=$	$10.63 \mathrm{cfs} @$	12.04 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=504.81' @ 12.04 hrs

Device	Routing	Invert	Outlet Devices
\#1	Primary	502.50'	18.0" $\times 10.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$ Outlet Invert $=502.35$ ' $\mathrm{S}=0.0150 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.013$ Corrugated PE , smooth interior

Primary OutFlow Max=10.61 cfs @ 12.04 hrs HW=504.81' (Free Discharge)
L- $_{1=\text { Culvert }}$ (Inlet Controls 10.61 cfs @ 6.00 fps)

Pond BIO 1: Bio-Retention Zone \#1

Inflow Area =	1.998 ac ,	nflow Depth $=5.85{ }^{\prime \prime}$	for 100 Year event
Inflow =	7.88 cfs @	12.38 hrs , Volume=	0.975 af
Outlow	7.71 cfs @	12.44 hrs , Volume=	0.975 af, Atten= 2\%, Lag= 3.4 min
Discarded =	0.53 cfs @	12.44 hrs , Volume=	0.452 af
Primary	7.18 cfs @	12.44 hrs , Volume=	0.523 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=504.84' @ 12.44 hrs Surf.Area= 5,775 sf Storage $=5,001$ cf
Plug-Flow detention time $=54.4 \mathrm{~min}$ calculated for 0.975 af (100% of inflow)
Center-of-Mass det. time $=54.4 \mathrm{~min}(880.5-826.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	500.75^{\prime}	$14,283 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Voids (\%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
500.75	2,600	40.0	0	0
501.50	2,600	20.0	390	390
504.00	2,600	20.0	1,300	1,690
504.01	2,600	100.0	26	1,716
504.50	4,000	100.0	1,617	3,333
505.00	6,600	100.0	2,650	5,983
506.00	10,000	100.0	8,300	14,283

Device	Routing	Invert	Outlet Devices
\#1	Discarded	0.00^{\prime}	4.000 in/hr Soil Exfiltration over Surface area
\#2	Primary	504.50^{\prime}	$\mathbf{2 . 5 0} \times 3.00^{\prime}$ Horiz. Orifice/Grate \quad Limited to weir flow $\mathrm{C}=0.600$

Discarded OutFlow Max=0.53 cfs @ 12.44 hrs HW=504.84' (Free Discharge)
L1=Soil Exfiltration (Exfiltration Controls 0.53 cfs)
Primary OutFlow Max=7.17 cfs @ 12.44 hrs HW=504.84' (Free Discharge)
L2=Orifice/Grate (Weir Controls 7.17 cfs @ 1.91 fps)

Pond C1: Road Culvert Storage

Inflow Area $=$	5.578 ac, Inflow Depth $=5.85 "$	for 100 Year event	
Inflow	$=$	$16.00 \mathrm{cfs} @$	12.73 hrs, Volume $=$
Outflow	$=$	$16.00 \mathrm{cfs} @$	12.73 hrs , Volume $=$
Primary	$=$	$16.00 \mathrm{cfs} @$	12.73 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=503.12' @ 12.73 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	501.00^{\prime}	$\mathbf{2 4 . 0 ^ { \prime \prime } \times 1 5 0 . 0 ^ { \prime } \text { long Culvert CPP, square edge headwall, } \mathrm { Ke } = 0 . 5 0 0}$
		Outlet Invert= 499.75' $\mathrm{S}=0.00833^{\prime \prime} / \mathrm{I}^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE , smooth interior	

Primary OutFlow Max=16.00 cfs @ 12.73 hrs HW=503.12' (Free Discharge)
亡-1=Culvert (Inlet Controls $16.00 \mathrm{cfs} @ 5.09 \mathrm{fps}$)

Pond C2: Road Culvert Storage

Inflow Area $=$	0.819 ac, Inflow Depth $=6.58$ for	for 100 Year event	
Inflow	$=$	$6.25 \mathrm{cfs} @$	12.08 hrs, Volume $=$
Outflow	$=$	$6.25 \mathrm{cfs} @$	12.08 hrs, Volume $=$
Primary	$=$	$6.25 \mathrm{cfs} @$	12.08 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=505.33' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	501.75^{\prime}	$15.0^{\prime \prime} \times 40.0^{\prime}$ long Culvert CPP, square edge headwall, $\mathrm{Ke}=0.500$
		Outlet Invert $=500.25^{\prime} \quad S=0.0375^{\prime \prime} \%^{\prime} \quad \mathrm{Cc}=0.900$	

\#2 Device $1 \quad 505.00^{\prime} \quad 2.50^{\prime} \times \mathbf{2 . 5 0}^{\prime}$ Horiz. Orifice/Grate Limited to weir flow $\mathrm{C}=0.600$
Primary OutFlow Max=6.23 cfs @ 12.08 hrs HW=505.33' (Free Discharge)
$\Psi_{1=C u l v e r t ~(P a s s e s ~}^{6.23 \mathrm{cfs} \text { of } 10.16 \mathrm{cfs} \text { potential flow) }) ~(1) ~}$
2=Orifice/Grate (Weir Controls $6.23 \mathrm{cfs} @ 1.88 \mathrm{fps}$)

Pond Pond: Existing Pond

Inflow Area $=$	11.691 ac, Inflow Depth $>$	$5.45 "$	for 100 Year event
Inflow	$=$	$29.17 \mathrm{cfs} @$	12.47 hrs , Volume=
Outlow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume=
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 498.30' @ 48.00 hrs Surf.Area= 145,722 sf Storage= $231,267 \mathrm{cf}$
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert Avail.Storage		Storage Description		
\#1	496.00 ' 1,3	8,750 cf	Custom Stage	regular)Li	w (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
496.00	55,000	1,900.0	0	0	55,000
498.00	139,810	2,309.0	188,333	188,333	192,056
500.00	181,423	2,690.0	320,331	508,664	343,703
502.00	204,288	2,950.0	385,485	894,149	460,532
504.00	230,578	3,150.0	434,601	1,328,750	557,808

Device	Routing	Invert	Outlet Devices
$\# \# 1$	Primary	504.50^{\prime}	Custom Weir/Orifice, C=2.62
		Head (feet) $0.001 .001 .50 \quad 2.00$	
			Width (feet) 143.00150 .00155 .00170 .00

Primary OutFlow Max=0.00 cfs @ $0.00 \mathrm{hrs} \mathrm{HW=496.00'} \mathrm{(Free} \mathrm{Discharge)}$
$\pm 1=$ Custom Weir/Orifice (Controls 0.00 cfs)

Pond WQB1: Water Quality Basin \#1

Inflow Area =
Inflow $=$
Outflow $=$
Primary $=$
Secondary
2.744 ac, Inflow Depth = 7.17"
for 100 Year event
Inflow = 17.64 cfs @ 12.04 hrs, Volume= 1.639 af

Outflow = $10.45 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume= $\quad 1.380 \mathrm{af}$, Atten= 41%, Lag= 6.9 min
Primary $=8.03$ cfs @ 12.16 hrs , Volume $=\quad 1.320$ af
Secondary =
2.42 cfs @ 12.16 hrs , Volume=
0.061 af

Routing by Stor-Ind method, Time Span= $0.00-48.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=503.71' @ 12.16 hrs Surf.Area= $10,347 \mathrm{sf}$ Storage= $28,664 \mathrm{cf}$
Plug-Flow detention time $=334.2$ min calculated for 1.380 af (84% of inflow)

Center-of-Mass det. time $=267.1 \mathrm{~min}(1,038.2$ - 771.1)

Volume	Invert	t Avail.Storage Storage Description			
\#1	497.00	' 31,756 cf Cust		tage Data (C	isted below (Recalc)
Elevation (feet)	Surf.Area$(\mathrm{sq}-\mathrm{ft})$		inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
497.00		900	0	0	900
498.00		1,450	1,164	1,164	1,463
500.00		2,500	3,903	5,067	2,559
501.50		5,500	5,854	10,921	5,577
502.00		6,900	3,093	14,014	6,984
504.00		11,000	17,741	31,756	11,137
Device	Routing	Invert	Outlet Devices		
\#1	Primary	$500.50{ }^{\prime}$	18.0" $\times 30$ CPP, mitere Outlet Inver $n=0.013$	ng Culvert conform to fill $00.00^{\prime} \mathrm{S}=0$. gated PE, sm	$\begin{aligned} & 0.700 \\ & C c=0.900 \end{aligned}$ terior
\#2	Device 1	501.50'	3.0 " Vert.	e/Grate C=	
\#3	Device 1	$503.00 '$	$4.00{ }^{\prime} \mathrm{W} \times 1$.	H Vert. Prima	rflow C= 0.600
\#4	Secondary	ry 503.50'	10.0^{\prime} long Head (feet) Coef. (Englis	0^{1} breadth B $0.40 \quad 0.60$ 2.492 .562	rested Rectangular 1.001 .201 .401 .60 92.682 .692 .67

Primary OutFlow Max=8.03 cfs @ 12.16 hrs HW=503.71' (Free Discharge)
$1=$ Culvert (Passes 8.03 cfs of 11.78 cfs potential flow)
-2=Orifice/Grate (Orifice Controls $0.34 \mathrm{cfs} @ 6.95 \mathrm{fps}$)
—3=Primary Overflow (Orifice Controls 7.68 cfs @ 2.71 fps)
Secondary OutFlow Max=2.40 cfs @ 12.16 hrs HW=503.71' (Free Discharge)

Appendix C

Revised Post Drainage Area Map

$=-\frac{\text { BUILDING }}{} 3$ NORTH ELEVATION

PROPOSED KEY

GENERAL NOTES

DESIGN DATA

utulir constructian

Somarap pontome

 \qquad
 \qquad

Lind

 smaters Swewes

Semen

54.

Tomwsewe s ssiteen Notes

(1) TYPICAL WATER MAIN TRENCH DETAIL

$2 \frac{\text { TYPICAL GATE VALVE DETAIL }}{\text { NOTTO SCALE }}$
NOT TO SCALE
SEE TOWN NOTE

3 TYPICAL WET TAP DETAIL
3 NOT TO SCALE
SEE TOWN NOTE 6

4
TYPICAL FIRE HYDRANT DETAIL

(5) WATERLINE SEPERATION

NOT TO SCALE

6 TYPICAL WATER LINE CONNECTION

Water malan Noow

 12.The instalalion nust meet the eqeavirenents of the "Standard

Tresure Pere poocedine

Anemenexis.
Atane nemes.

为

vistaction Pococelues:

suce Ppoc comentiones:

 fros Sminiters

WATER DETAILS
LAKESIDE SENIOR HOUSING

FEBRUARY 8,2016

(1)

DUMPSTER RECEPTACLE SCREEN PLAN
SCALE: NOT TO SCAE

(2) DUMPSTER RECEPTACLE SCREEN ELEVATION

(3)

DUMPSTER RECEPTACLE SCREEN SECTION
SCALE: NOT TO SCALE

(4) DUMPSTER CONCRETE PAD DETAIL

plan
EXCAVATED WASHOUT STRUCTURE
Construction $\frac{\text { EXCECFICATITONS }}{}$

(5) CONCRETE WASHOUT DETAIL

